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Abstract
We study the stationary problem of a charged Dirac particle in (2+1) dimensions
in the presence of a uniform magnetic field B and a singular magnetic tube of
flux � = 2πκ/e. The rotational invariance of this configuration implies that
the subspaces of definite angular momentum l + 1/2 are invariant under the
action of the Hamiltonian H . We show that for κ − l � 1 or κ − l � 0 the
restriction of H to these subspaces, Hl , is essentially self-adjoint, while for
0 < κ − l < 1 Hl admits a one-parameter family of self-adjoint extensions
(SAEs). In the latter case, the functions in the domain of Hl are singular (but
square integrable) at the origin, their behaviour being dictated by the value of
the parameter γ that identifies the SAE. We also determine the spectrum of the
Hamiltonian as a function of κ and γ , as well as its closure.

PACS numbers: 0230T, 0230S, 0230J, 0365P

Mathematics Subject Classification: 81Q10, 35P05

1. Introduction

In quantum mechanics, observables are realized in terms of self-adjoint operators on a Hilbert
space. It is for these operators that the spectral theorem holds [1]. In particular, the dynamics
of a quantum system should be given by a unitary group whose generator, the Hamiltonian H
(usually a differential operator acting on an appropriate space of square integrable functions),
must be self-adjoint.

In general, physical considerations lead to a formal expression for the Hamiltonian,
although they can leave its domain of definition not completely specified. Usually, one can
choose a dense subspace of the Hilbert space on which H is well defined and symmetric, but
not necessarily self-adjoint.

In these conditions, the question is posed of determining whether the expression found for
H has a unique self-adjoint extension (SAE) in the Hilbert space (i.e. whether H is essentially
self-adjoint), or whether it admits different SAEs (differing in the physics they describe) and,
in this case, which one corresponds to the physical system under consideration.
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A situation of practical interest in which the Hamiltonian admits nontrivial SAEs
corresponds to the movement of charged particles under the influence of a Bohm–Aharonov
singular magnetic flux tube [2], such as fermions in the presence of cosmic strings [3] or
nonrelativistic spinless quantum particles interacting with a thin solenoid [4]. In [3–6], this
problem has been analysed by means of von Neumann’s theory of deficiency subspaces [1].

This kind of situation has also been studied as a limit of a smeared flux, using a δ-function
shell magnetic field [7, 8] or uniform magnetic fields confined to a finite tube [9, 10], and a
punctured plane [11, 12], which leads to the consideration of boundary conditions at a finite
radius, both spectral and local. The study of charged particle states bounded to flux tubes has
also been of interest [13–17].

The presence of a δ-like magnetic field has also been considered in connection with vacuum
polarization effects in [18], to model the presence of a pointlike impurity in a bidimensional
system [19] and more recently to describe a nonrelativistic electron in the presence of a uniform
electromagnetic field and a singular vortex, as a step toward its application to the quantum
Hall effect [20]. This configuration can also be relevant to the description of quasiparticles in
unconventional superconductors [21, 22].

It is the aim of this paper to study the behaviour of a Dirac electron of mass M and charge
e constrained to live in a (2+1)-dimensional space, in the presence of a constant magnetic field
B and a singular magnetic flux tube � = 2πκ/e passing through the origin. In so doing, we
will use von Neumann’s theory of deficiency indices to determine the existence of nontrivial
SAE for the Hamiltonian, a problem that, as far as we know, has not yet been solved.

The rotational symmetry of the problem allows for studying the action of the Hamiltonian
(a differential operator H defined on an appropriately restricted set of smooth functions) in
each invariant subspace characterized by a definite angular momentum l + 1/2. We find that
the restriction ofH to the subspaces with κ− l � 1 or κ− l � 0,Hl , is essentially self-adjoint,
while for 0 < κ − l < 1 the operator Hl admits a one-parameter family of SAEs. In the latter
case, the functions in the extended domain of Hl become singular (though square integrable)
at the origin, their behaviour being dictated by the value of the parameter γ that identifies the
SAE.

Finally, we also determine the spectrum of the Hamiltonian as a function of κ and γ .

2. Formulation of the problem

Let us consider a Dirac particle of mass M and charge e in a (2 + 1)-dimensional spacetime,
in the presence of a uniform magnetic field B and a singular magnetic flux tube � = 2πκ/e
passing through the origin (i.e. the flux originated in a magnetic field which is null at each
point of the plane except at the origin, and whose flux through every curve enclosing the origin
is finite).

The wavefunction of this particle is a two-component spinor ψ satisfying the Dirac
equation (we adopt the fundamental units for which h̄ = 1 = c),

(i �D −M)ψ = 0 (1)

where the covariant derivative1 is �D =�∂ − ie �A.

1 We choose the following representation of the γ -matrices:

γ 0 = σ 3 γ 1 = −iσ 2 γ 2 = iσ 1 (2)

where the σ i , i = 1, 2, 3, are the Pauli matrices. In a three-dimensional space-time, a nonequivalent representation
is obtained by changing the sign of the matrices, γ µ → −γ µ, but this amounts to changing the sign of the parameter
M , which therefore can be considered to take real values.
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We choose the following expression for the vector potential leading to the magnetic field
under consideration:

�A =
(
�r

e
+
κ

er

)
êθ (3)

where � = eB/2 has units of squared mass and êθ is the unit vector orthogonal to the radial
direction.

Accordingly, we obtain for the Dirac Hamiltonian HD = √
�H , where H is the

dimensionless differential operator

H =
[

m ie−iθ
(
∂x − i

x
∂θ − x − κ

x

)
−ieiθ

(−∂x − i
x
∂θ − x − κ

x

) −m
]

(4)

expressed in polar coordinates (x = √
�r, θ), with m = M/

√
� the particle mass in units of

�1/2.
SinceH commutes with the angular momentum operator, J = −i∂θ +σ 3/2, the subspaces

spanned by the two-component spinors of the form

ψ(x, θ) =
(

eilθφ(x)
ei(l+1)θχ(x)

)
∈ L2(R

2, x dx dθ) l ∈ Z (5)

are left invariant by the action of H . The restriction of H to each subspace characterized by
l, Hl , can be cast into the form

Hl =
(

m i
(

d
dx + 1−α

x
− x

)
i
(

d
dx + α

x
+ x

) −m
)

(6)

with α = κ − l, when acting on two-component functions of the radial coordinate,

ψ(x) =
(
φ(x)
χ(x)

)
(7)

where φ(x), χ(x) ∈ L2(R
+, 2πx dx).

In order to ensure that Hl be symmetric and well defined we can restrict its domain to

D(Hl) ≡ C∞
0 (R+) (8)

the subspace of functions with compact support away from the origin and continuous derivatives
of all orders, which is dense in L2(R

+, 2πx dx).
To determine whether Hl so defined is (essentially) self-adjoint we must compute its

deficiency indices in the Hilbert spaceL2(R
+, 2π x dx), i.e. the dimensions of the characteristic

subspaces K± of its adjoint, H †
l , corresponding to eigenvalues ±i,

n± = dim K±. (9)

In the following we shall show that Hl admits SAEs for 0 < κ − l < 1, being essentially
self-adjoint for the other angular momentum subspaces.

3. Self-adjoint extensions

In order to determine the deficiency indices of the operator Hl defined in the previous section,
we must determine the deficiency subspaces K±.

Let us recall that the domain of H †
l , D(H †

l ), is the set of functions f (x) = (
f1(x)

f2(x)

) ∈
L2(R

+, 2πx dx), for which functions g(x) = (
g1(x)

g2(x)

) ∈ L2(R
+, 2πx dx) exist, such that

(f,Hlψ) = (g, ψ) (10)

for any ψ ∈ D(Hl). The adjoint H †
l is defined by g = H

†
l f .
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Taking into account equation (8) and the expression for Hl , equation (6), one can easily
see that, away from the origin, the first weak derivative of f (x) is locally in L2(R

+, 2πx dx).
Therefore, by Sobolev’s lemma (see [1]), f (x) is absolutely continuous. This allows for an
integration by parts in equation (10), which gives(

g1

g2

)
=

(
m i

(
d

dx + 1−α
x

− x
)

i
(

d
dx + α

x
+ x

) −m
) (

f1

f2

)
. (11)

In conclusion,H †
l acts as a differential operator in the same way asHl in equation (6), but on

a larger domain D(H †
l )(⊃D(Hl)), consisting of the subspace of functions of L2(R

+, 2πx dx)
which are absolutely continuous in R

+/{0}.
In accordance with appendix A, we must now determine the subspaces K± by looking for

linearly independent eigenfunctions of the operator H †
l corresponding to the eigenvalues ±i,

ψ±
(x). Taking into account equation (11), it is easily seen from

H
†
l ψ

±
(x) = ±iψ±

(x) (12)

that the first derivative of ψ±
(x) is absolutely continuous, as well as its derivatives of all orders.

Thus, ψ±
(x) ∈ C∞ ⋂

L2(R
+, 2πx dx), and the eigenvalue problem equation (12) reduces to a

classical ordinary differential equation.
Then, equation (12) leads to the following system of coupled differential equations for the

components, φ± and χ±, of the eigenfunctions ψ±:

i
dχ±
dx

− i

(
α − 1

x
+ x

)
χ± = (±i −m)φ± (13)

i
dφ±
dx

+ i
(α
x

+ x
)
φ± = (±i + m)χ±. (14)

Replacing χ± from equation (14) in (13), we obtain for the other component

φ′′
± +

1

x
φ′

± −
((α

x

)2
+ x2 − 2(1 − α) + m2 + 1

)
φ± = 0. (15)

Making the substitution

φ± = e− x2

2 x−αF (x2) (16)

we obtain Kummer’s equation [23]

x2 d2F

d(x2)2
(x2) +

[
b − x2

] dF

d(x2)
(x2)− a F(x2) = 0 (17)

with a = m2+1
4 > 0 and b = 1 − α = 1 − κ + l.

This equation has two linearly independent solutions [23], M(a, b, x2) and U(a, b, x2),
only the latter of which leads to φ± ∈ L2((δ,∞), 2πx dx), with δ > 0. On the other hand,
the condition φ± ∈ L2((0, δ), 2πx dx) requires 0 < b < 2 (see [23], p 508).

Moreover, the condition that the second component (determined by equation (14)) satisfies
χ± ∈ L2(R

+, 2πx dx) imposes 0 < b < 1. This requires2 that κ /∈ Z, and selects the subspace
for which l is the integer part of κ , κ−1 < l < κ , as the only one where nontrivial SAEs exist.

Thus, for l �= [κ], Hl is essentially self-adjoint, admitting a unique SAE given by the
closure of its graph (see appendix B).

2 Notice that if κ ∈ Z, the presence of the singular flux through the origin amounts to a shift in the value of the
orbital angular momentum (as can be seen from equation (6)), without any further consequence, Hl being essentially
self-adjoint. For brevity, we will not further consider this case in what follows.
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On the other hand, for l = [κ] we have found one-dimensional subspaces K±, generated
by the solutions of equation (12), ψ±, given in components by

φ± = e− x2

2 x−αU
(
a = m2 + 1

4
; b = 1 − α; x2

)
(18)

χ± =
[−im∓ 1

2

]
e− x2

2 x−α+1U

(
a = m2 + 5

4
; b = 2 − α; x2

)
. (19)

Therefore, n+ = 1 = n−, andH[κ] admits a one-parameter (γ ) family of (essentially) SAEs [1],
H

γ

[κ], which, as explained in the appendix A, are in a one-to-one correspondence with the
isometries Uγ from K+ onto K−:

Uγ ψ
+ = eiγ ψ− (20)

with −π < γ � π .
The functions ψ(x) in the domain of Hγ

[κ] are of the form

ψ = ψ0 + c(ψ+ + eiγ ψ−) (21)

where ψ0 ∈ C∞
0 (R+) and c ∈ C, the action of Hγ

[κ] being defined by

H
γ

[κ]ψ ≡ H[κ]ψ0 + c i(ψ+ − eiγ ψ−). (22)

In appendix B, it is shown that the functions in the closure of the graph of H[κ] are
continuous and vanishing for x → 0+. Therefore, the behaviour at the origin of the
functions in the domain of the closure of Hγ

[κ], D(Hγ

[κ]), is determined by the behaviour of
ψ(γ ) ≡ ψ+ + eiγ ψ−, whose components satisfy

φ(γ ) = (1 + eiγ )
.(α)

.(α + m2+1
4 )

x−α + O(xα) (23)

χ(γ ) = −i

2

[
m(1 + eiγ )− i(1 − eiγ )

] .(1 − α)

.(m
2+5
4 )

x−1+α + O(x1−α). (24)

This allows for the following characterization of the boundary conditions that the functions

ψ =
(
φ

χ

)
∈ D(Hγ

[κ]) satisfy:

lim
x→0+

{
x
[
φ χ(γ ) − χ φ(γ )

]} = 0. (25)

We will use this condition in the next section to determine the spectrum of Hγ

[κ].

4. Spectrum of Hγ
[κ]

In this section, making use of the boundary condition deduced in equation (25), we will
determine the eigenfunctions and eigenvalues ofHγ

[κ]. So we must solve the eigenvalue problem

H
γ

[κ]ψ = λψ. (26)

Notice that, since Hγ

[κ] is the restriction of H †
[κ] to D(Hγ

[κ]) ⊂ D(H †
[κ]), both operators

are realized by the same differential operator (given in equation (6), with l replaced by [κ]).
On the basis of an argument similar to the one following equation (12), we conclude that we
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are looking for C∞ solutions of an ordinary differential equation. In terms of the components
φ and χ , we obtain the pair of coupled differential equations

iχ ′ − i

(
α − 1

x
+ x

)
χ = (λ−m)φ (27)

iφ′ + i
(α
x

+ x
)
φ = (λ + m)χ. (28)

Once again, the substitution given in equation (16) (now with 0 < α < 1) leads to
Kummer’s equation for F(x2), equation (17), with a = m2−λ2

4 and b = 1−α. The requirement
that φ and χ belong to L2(R

+, 2πx dx) selects as the unique solution

φλ = e−x2/2x−αU(a = (m2 − λ2)/4; b = 1 − α; x2) (29)

χλ = i

2
(λ−m) e−x2/2x1−αU(a = 1 + (m2 − λ2)/4; b = 2 − α; x2) (30)

behaving, for x → 0+, as

φλ = x−α .(α)

.(α + m2−λ2

4 )
+ O(xα) (31)

χλ = i(λ−m)

2
x−1+α .(1 − α)

.(1 + m2−λ2

4 )
+ O(x1−α). (32)

So, the condition expressed in equation (25) implies

.(α)

.(α + m2−λ2

4 )

[
m(1 + eiγ )− i(1 − eiγ )

] .(1 − α)

.(m
2+5
4 )

= − (λ−m)
.(1 − α)

.(1 + m2−λ2

4 )
(1 + eiγ )

.(α)

.(α + m2+1
4 )

(33)

which can also be written as

G(λ) ≡ (λ−m)

(
.(α + m2/4 − λ2/4)

.(1 + m2/4 − λ2/4)

)

= (tan (γ /2)−m)

(
.(α + m2/4 + 1/4)

.(m2/4 + 5/4)

)
≡ β(γ ). (34)

This is a transcendental equation determining the eigenvalues of H
γ

[κ]. The whole
dependence on λ is contained inG(λ), on the lhs. This function has simple zeros at λ = m and
λ = ±

√
4 + m2 + 4n, and simple poles at λ = ±

√
4α + m2 + 4n, for n = 0, 1, 2, . . . (see

figure 1).
On the rhs of equation (34), β(γ ) is a constant depending only on m, α and the parameter

γ characterizing the SAE of H[κ]. It can take all real values with γ ranging from −π to π ,
being β(γ ) > 0 for γ0 < γ < π and β(γ ) < 0 for −π < γ < γ0, where γ0 = 2 arctan(m).

It is evident from figure 1 that the spectrum of Hγ

[κ] does depend on γ . If γ0 < γ < π ,
the eigenvalues lie between a zero of G(λ) and the nearest pole on its right: for λ > m√

m2 + 4(N + 1) < λN <
√
m2 + 4(α + N + 1) (35)

with N = 0, 1, 2, . . . and, for λ < m,

−
√
m2 − 4N < λN < −

√
m2 + 4(α −N − 1) (36)

with N = −1,−2,−3, . . . .
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Figure 1. Graphs of G(λ) for m = 1 and α = 1/4. The horizontal line corresponds to a positive
value of β(γ ).

For −π < γ < γ0 the eigenvalues are bounded on the left by a pole and on the right by
the nearest zero of G(λ): for λ > m√

m2 + 4(α + N − 1) < λN <
√
m2 + 4N (37)

with N = 1, 2, 3, . . . ,

−
√
m2 + 4α < λ0 < m (38)

and, for λ < 0,

−
√
m2 + 4(α −N) < λN < −

√
m2 − 4N (39)

with N = −1,−2,−3, . . . .
Notice that there is only one level with |λ| <

√
m2 + 4α. Moreover, the spectrum of Hγ

[κ]
is symmetric with respect to the origin only for γ = π and (except for the eigenvalue λ0 = m)
for γ = γ0.

5. Spectrum of HL for L �= [κ]

In this section we complete the description of the Hamiltonian spectrum by computing the
eigenfunctions and eigenvalues of Hl for l �= [κ].

As we saw in section 3, in the present caseHl is essentially self-adjoint, admitting a unique
SAE given by the closure of its graph. According to appendix B, the vectors in D(Hl) are
absolutely continuous functions vanishing at the origin.

We are looking for solutions of the system given by equations (27) and (28) in this domain.
Once again, by an argument similar to the one employed in section 3, one can see that the
eigenvectors belong to C∞ ⋂

L2(R
+, 2πx dx).

Following the same steps as in section 4, one obtains the solutions in terms of Kummer’s
functions. It is convenient to write them in terms of the following pair of linearly independent
solutions of equation (17):

F1(x
2) = M(a; b; x2) (40)

F2(x
2) = x2αM(1 + a − b; 2 − b; x2) (41)

where a = m2−λ2

4 and b = 1 − α, with α = κ − l (/∈ Z—see footnote 2). We will consider the
cases l < [κ] and l > [κ] separately.
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(i) l < [κ]

For l < [κ] (α = κ − l > 1), only F2(x
2) leads to functions

φλ = e−x2/2xαM

(
m2 − λ2

4
+ α; 1 + α; x2

)
(42)

χλ =
[

2i

(m + λ)

]
e−x2/2x−1+α

[
αM

(
m2 − λ2

4
+ α; 1 + α; x2

)

+
m2 − λ2 + 4α

4(1 + α)
x2M

(
m2 − λ2

4
+ α + 1; 2 + α; x2

)]
(43)

which are in L2((0, δ > 0), 2πx dx). Moreover, the condition φλ, χλ ∈ L2((δ,∞), 2πx dx)
requires that M(1 + a − b; 2 − b; x2) reduces to a polynomial, which occurs only when

1 + a − b = κ − l +
m2 − λ2

4
= −n (44)

with n = 0, 1, 2, . . . . So, the eigenvalues are given by

λ = ± 2
√
m2/4 + κ + NN = −l,−l + 1,−l + 2, . . . . (45)

Notice that both the eigenfunctions and eigenvalues depend on the singular flux κ .

(ii) l > [κ]

For l > [κ] (α = κ − l < 0), only F1(x
2) leads to functions

φλ = e−x2/2x−αM
(
m2 − λ2

4
; 1 − α; x2

)
(46)

χλ =
[

i(m− λ)

2(1 − α)

]
e−x2/2x1−αM

(
m2 − λ2

4
+ 1; 2 − α; x2

)
(47)

which are inL2((0, δ > 0), 2πx dx). Once again, the condition φλ, χλ ∈ L2((δ,∞), 2πx dx)
requires that M(a; b; x2) reduces to a polynomial, which now occurs when

a = m2 − λ2

4
= −n (48)

with n = 0, 1, 2, . . . . This time, the eigenvalues are given by

λ = ± 2
√
m2/4 + N N = 0, 1, 2, . . . . (49)

In the present case the eigenfunctions do depend on the singular flux, but the eigenvalues are
independent of κ .

Finally, notice that in both cases (l < [κ] and l > [κ]) the eigenfunctions obtained vanish
at the origin, thus belonging to the domains D(Hl) of the corresponding operator.

Appendix A. Self-adjoint extensions of unbounded operators

In this appendix we briefly review the theory of deficiency indices of von Neumann (for an
extended presentation of the subject, see [1]). We first recall the definition of the adjoint of a
given linear operator.

Let A be a linear operator defined on a dense subspace D(A) of a Hilbert space H . The
domain of definition of the adjoint operator A†, D(A†), is the set of vectors ψ ∈ H making
the inner product (ψ,Aφ) continuous in φ ∈ D(A). By virtue of the Riesz–Fischer theorem,
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for any such ψ there exists a unique vector χ ∈ H satisfying (ψ,Aφ) = (χ, φ), ∀φ ∈ D(A).
One defines A†ψ ≡ χ .

A linear operator A is symmetric if

(φ1, A φ2) = (Aφ1, φ2) ∀φ1, φ2 ∈ D(A). (A.1)

A linear operator A is self-adjoint if it coincides with its adjoint A†, i.e. if D(A†) = D(A) and

A†φ = Aφ ∀φ ∈ D(A). (A.2)

To establish the conditions a closed3 symmetric operator must satisfy to be self-adjoint,
a few definitions are in order. Let K± = Ker(A† ∓ i) be the characteristic subspaces of A†

corresponding to the ±i eigenvalues respectively. The deficiency indices of the operator A,
n±, are defined as the dimensions of the subspaces K±.

It is worth recalling that a closed symmetric operator is self-adjoint if and only if its
deficiency indices are zero [1]. However, if the deficiency indices are not zero but equal the
operator admits a family of SAEs whose construction can be carried out by means of the
following theorem [1]: let A be a closed symmetric operator whose deficiency indices n± are
equal; then it admits a family of SAEs which are in a one-to-one correspondence with the
unitary maps from K+ onto K−.

In fact, let U be such an isometry, then the corresponding SAE AU has domain D(AU ) =
{ψ : ψ = φ + φ+ + U(φ+)}, where φ ∈ D(A), and φ+ ∈ K+. The action of the extension AU is
given by

AU (φ + φ+ + U(φ+)) = A(φ) + iφ+ − iU(φ+). (A.3)

This provides a method for constructing the SAE of closed symmetric operators with equal
deficiency indices by identifying each possible unitary map from K+ onto K−.

Appendix B. Closure of HL

In this appendix we will study the closure Hl of the operator in equation (6),

Hl =
(

m i
(

d
dx + 1−α

x
− x

)
i
(

d
dx + α

x
+ x

) −m
)

(B.1)

defined on D(Hl) = C∞
0 (R+), a dense subspace of L2(R

+, 2πx dx). It will be shown that the
functions in the domain of definition of Hl are continuous near the origin, and vanishing for
x → 0+.

In order to obtain D(Hl) we must add to the domain of Hl the limit points of the Cauchy
sequences in D(Hl) whose images by Hl are also Cauchy sequences.

So, let us consider a Cauchy sequence {ψn}n∈N with ψn ∈ D(Hl),∀n ∈ N, and such that
{Hlψn}n∈N is also a Cauchy sequence. Therefore, given ε > 0,

‖ψn − ψm‖2 < ε (B.2)

‖Hl(ψn − ψm)‖2 < ε (B.3)

for n,m sufficiently large. Making use of equation (B.1), it is easily seen that

‖Hl(ψn − ψm)‖2 =
∫ ∞

0

(|φ′|2 + p(x)|φ|2 + |χ ′|2 + q(x)|χ |2)2πx dx (B.4)

3 Recall that an operator is closed if its graph is a closed subset of H × H . Every symmetric operator defined on a
dense set is closable, i.e. has a closed symmetric extension.
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where we have denoted by φ and χ respectively the upper and lower component of (ψn−ψm),
while the functions p(x), q(x) are given by

p(x) =
[(

α

x
+ x

)2

+ m2 − 2

]
(B.5)

q(x) =
[(

1 − α

x
+ x

)2

+ m2 + 2

]
(B.6)

and are O(x−2) for x → 0+ (since we are taking α /∈ Z—see footnote 2). It is not hard to see
that both p(x) and q(x) are positive in the interval [0, δ] for some positive δ. Only p(x) can
change its sign in an interval (x1, x2) (depending on α and m), with 0 < δ < x1 < x2 < ∞.
Notice that the integrand of equation (B.4) (obtained through an integration by parts) could
take negative values only in (x1, x2), as a consequence of the term p(x)|φ(x)|2.

Moreover, for δ small enough, we can choose K > 0 such that p(x) > K/x2. Taking
into account equations (B.2) and (B.4), for a given ε > 0, we can write∫ δ

0
|φ′|2x dx < ε

∫ δ

0

|φ|2
x

dx < ε (B.7)

and ∫ δ

0
|χ ′|2x dx < ε

∫ δ

0

|χ |2
x

dx < ε (B.8)

if n,m are large enough. Therefore,{√
x ψ ′

n(x)
}

and
{
ψn(x)/

√
x
}

(B.9)

are Cauchy sequences in L2(0, δ) (with respect to the usual Lebesgue measure), as well as the
sum {√

x ψ ′
n(x) + ψn(x)/(2

√
x)

} = {[√
x ψn(x)

]′}
. (B.10)

Let us call �(x) = limn→∞
[√

x ψn(x)
]′ ∈ L2(0, δ), and denote its primitive by

√
x 7(x) ≡

∫ x

0
�(y) dy (B.11)

which is an absolutely continuous function [1] in (0, δ). In particular, 7(x) is continuous in
(0, δ).

On the basis of

|√x(7(x)− ψn(x))| =
∣∣∣∣
∫ x

0

[
�(y)− (√

y ψn(y)
)′]

dy

∣∣∣∣
�

√∫ δ

0

∣∣∣�(y)− (√
yψn(y)

)′∣∣∣2
dy

√∫ δ

0
1 dy −→ 0 for n → ∞ (B.12)

we conclude that the sequence {√x ψn(x)} converges uniformly to
√
x 7(x) in (0, δ), and

consequently also in the metric of L2(0, δ),

lim
n→∞

{√
x ψn(x)

} = √
x 7(x). (B.13)

(Notice that 7(x) is the limit of {ψn(x)} in L2[(0, δ), x dx].)
In addition, it is straightforward to show that

7(x)√
x

= lim
n→∞

{
ψn(x)√

x

}
. (B.14)
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Then, we conclude from equations (B.11) and (B.14) that

lim
n→∞

{√
xψ ′

n(x)
} = √

x7 ′(x) (B.15)

in the metric of L2(0, δ).
Therefore, we can write∫ δ

0
|7 ′|2x dx < ∞

∫ δ

0

|7|2
x

dx < ∞. (B.16)

This implies that 7 ′(x) ·7(x) = 1/2 (7(x) ·7(x))′ ∈ L1(0, δ).
On the other hand, the components of 7(x), 7α(x) with α = 1, 2, are absolutely

continuous functions in (ε, δ), for ε < δ, by virtue of equation (B.11). In consequence∫ δ

ε

(
72
α(x)

)′
dx = 72

α(δ)−72
α(ε). (B.17)

In this expression we can take the limε→0+ , proving that the continuous function 72
α(x) has a

well defined limit for x → 0+. Moreover, on account of equation (B.16), this limit must be
zero.

As a consequence of the previous results, we conclude that the behaviour near the origin
of the functions in D(Hγ

[κ]) is dominated by the functions in K± (see equations (23) and (24)).
On the other hand, since the restriction of the Hamiltonian to the subspaces with l �= [κ]

is, as already mentioned, essentially self-adjoint, the behaviour of the functions at the origin
is dictated by its closure, therefore being continuous and satisfying the boundary condition

lim
x→0+

ψ(x) = 0. (B.18)
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